

Search and Rescue Satellite-Aided Tracking (SARSAT)

Distress Alerting Satellite System (DASS)

COSPAS-SARSAT

The Cospas-Sarsat Program protects life and property by providing accurate, timely, and reliable distress alert and location information to search and rescue authorities.

COSPAS = Cosmicheskaya Systyema Poiska Aariynyich Sudov

Which loosely translates into: "The Space System for the Search of Vessels in Distress"

SARSAT = Search And Rescue Satellite Aided Tracking

Cospas-Sarsat: Current System

Cospas-Sarsat Space Segment

2 Types of Satellites:

- Low Earth Orbiting Search And Rescue (LEOSAR)- 5 on Orbit
 - Altitude: 500 miles in "Pole-Pole" orbit
 - Performs Doppler locating function (primary means of locating...not GPS)
 - Stores & Forwards alerts continuously for 48 hours (provides worldwide coverage and total system redundancy)
 - Geostationary Orbiting Search And Rescue (GEOSAR)- 4 on Orbit
 - Altitude: 23,000 miles in fixed orbit

- Performs instantaneous alerting function. No locating capability unless beacon is equipped with GPS.

- Coverage from 70N – 70S

LEOSAR Instantaneous View of the Earth, a Circle of about 3000 km Radius

Typical Satellite Footprints

LEOLUTS and GEOLUTS

(Cospas-Sarsat Ground Stations)

LEOSAR Local User Terminals

(LEOLUT)

- Track COSPAS and SARSAT satellites (POES & METOP)
- Recover beacon signals
- Perform error checking
- Perform Doppler processing
- Send alert to Mission Control Center

<u>GEOSAR Local User Terminals</u> (GEOLUT)

Track GOES, MSG, & INSAT satellites

- •Recover beacon signals
- •Perform error checking
- •Send alert to Mission Control Center

Mission Control Centres (MCCs)

- Receive alerts from national LUTs and foreign MCCs.
- Validate, match and merge alerts to improve location accuracy and determine the correct destination.
- Query 406 MHz Registration Database and transmit registration info with distress alert.
- Transmit alerts (SIT msgs) to Rescue Coordination Centers (RCCs) and SAR Points of Contact (SPOC) and filters redundant data.
- Most MCC functions are handled automatically...no manual intervention = efficiency!

Suitland, Maryland

USMCC

Emergency Beacons

- Two types: 121.5/243 MHz and 406 MHz
- Four applications:
 - Emergency Position Indication Radio Beacons (EPIRB) for Maritime Uses
 - Emergency Locator Transmitters (ELT) for Aviation Uses
 - Personal Locator Beacons (PLB) for Remote Area Personal Use
 - Ship Security Alerting System (SSAS) for Shipboard Terrorism/Piracy Alerting (covert)

- More than 50K current military users
- Government users
 - DEA, Secret Service, NASA, DOE, DOD, etc.
- Most General Aviation (GA) aircraft require ELTs
 - More than 200,000 GA aircraft
 - 600,000 pilots, 6-8 million passengers [annual]
 - 31 million hours flown [annual]
- Most commercial fishing vessels carry EPIRBs
 - Ranked one of the most hazardous occupations in U.S.; 150 deaths per 100,000 workers [annual]
- 12 million potential recreational users in the US
 - PLBs became commercially available 1 July 2003

- SARSAT on average, contributes to the rescue of 300 persons in the U.S. and 1,300 persons internationally
 - CY 2007: 353 rescues
 - FY 2008: 308 rescues in the U.S. with SARSAT
- Over 22,000 lives saved worldwide since 1982
- Anticipate more than 1 million distress beacons operational by 2010

TERMINATION OF 121.5/243 MHz

- International Termination of 121 A 243EMHz Satellite Alghing Occurs Ohn G February 1, 2009
- U.S. Termination of 121.5 MHz EPIRBs 3 Phases
 - Certification of new 121.5 EPIRBs ceased in 1999
 - Sales and manufacture of 121.5 MHz EPIRBs ceased on February 1, 2003
 - Operation/Use of 121.5 MHz EPIRBs became <u>prohibited</u> on January 1, 2007

121.5 MHz ELTs will still be in use on general aviation aircraft after 2009...Challenge, voluntary transition by pilots ASAP!

Cospas-Sarsat Limitations

LEO satellite constellation: <u>systemic limitations</u>:

- Limited number of satellites.
 A single failure can cause an unacceptable gap in coverage
- Delays in confirmation of location. LEOs require at least 2 satellite passes to resolve ambiguity in Doppler location
- Long time interval between satellite passes. Delays calculation of distress beacon position and SAR service's response to the distress

Cospas-Sarsat Limitations

GEO satellite constellation: <u>systemic limitations</u>:

- Unable to provide independent location information.
- A limited number of GEOs, if one satellite fails, SARSAT would be unable to provide real time coverage to a significant portion of the world.
- GEOs are in synchronized orbit; subject to terrain masking by terrestrial features that can prevent distress beacon visibility.

Cospas-Sarsat Limitations

In addition to these limitations:

French Govt has decided to provide only a limited number of SAR instruments in the future. Through NPOESS C2.

The result will be a degradation of the current SARSAT service beginning in 2017 and complete failure by 2020.

This will leave millions of beacon users without a means to signal a distress.

Maximum Number of 406 MHz LEOSAR Payloads

Expected Benefits from DASS

Quicker Alerting

Time required to produce a distress beacon location will be significantly reduced from approx 47 minutes to 12 minutes allowing SAR responders to rescue survivors quicker – resulting in more lives saved.

More accurate positions

Error in locating a distress beacon will be reduced fm an average of 3.1km to 1.7km, resulting in reduced search times, quicker rescue, fewer resources wasted.

Less costly

By operating just one satellite constellation, life-cycle costs to build/operate the system are expected to be more than \$2.5M less than the current system.

Expected Benefits from DASS

Free from terrain masking

GPS satellites will be in non-synchronous orbit in relation to the Earth; satellite beacon detection will occur fm continually changes angles. As a result, terrain masking will be eliminated.

High levels of space and ground segment redundancy and availability

- GPS Block III satellites to host DASS payloads
 - Canada offered to build 406 repeater for DASS payloads (\$70M-\$90M)
- 24-satellite GPS constellation will provide at least 4 DASS repeaters continuously in view worldwide
- Full compatibility with all existing and future Cospas-Sarsat beacons
- DASS will be fully interoperable with EU and Russian proposed MEO satellites/ground stations